
2023

PCIeCAN 接口卡使用手册

V1.0.1

北京爱泰联合科技有限公司

Beijing iTekon Technology CO., LTD.

修订历史

版本	添加/更改/删除	日期
V1.00	产品发布	2023-01-02

目 录

第1章	产品简介	1
	Ⅰ 概述	
1. 2	2 产品特性	1
1. 3	3 产品外观	2
第2章	硬件安装与接线	3
2. 1	Ⅰ 硬件安装	3
2. 2	2 接口定义	3
2. 3	3 终端电阻	4
2. 4	4 指示灯	5
附录 1	装箱清单	6
附录 2	标准波特率设置	7
附录 3	CAN 总线通信距离(参考值)	8

第1章 产品简介

通过本章, 您可以了解 PCIeCAN 接口卡的基本特性。

1.1 概述

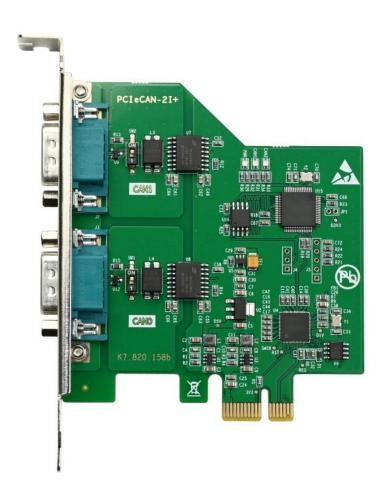
PCIeCAN-2I+接口卡是一款工业级计算机PCIe总线转CAN总线的通讯传输卡。该卡兼容PCI Express R1.0a 规范,采用XI插槽连接器并兼容X8、X16等常见PCI Express插槽,即插即用。其集成2路完全独立的CAN通道,符合CAN2.0B规范,兼容CAN2.0A规范。DC2500V电气隔离,CAN最高通讯速率可达1Mbps。

该型接口卡为工业级产品,可以工作在-20℃~+70℃的温度范围内。CAN 通信波特率可以在 5K~1Mbps 内任意设定。为保证良好的 EMC 和 EMI 性能,该卡采用完全独立的 CAN-bus 通道,有效避免 PC 遭受地环流的影响。同时,两路 CAN 接口均集成 CAN-bus 专用共模滤波器和 TVS 总线保护电路,为工作在电磁环境较复杂的工业场合提供安全保障。

为达到最优的通讯性能及长期运行的高可靠性,接口卡 CAN 接口采用具有技术优势的 CAN 收发器、隔离器及 DC/DC 隔离电源单芯片解决方案,PCIe 接口采用专用 PCIe 转本地总 线桥进行 CAN 数据收发。

用户二次开发可以调用我司提供的 DLL 库进行 CAN 数据收发,我司提供 Qt、C#、Labview、Python 主流开发环境的 SDK,支持 Windows、Linux 及 Android 平台。

该接口卡在 win8 及以上操作系统免安装驱动程序。


1.2 产品特性

- PCIe接口:兼容 PCI Express R1.0a 规范;
- CAN协议: CAN 2. OB规范 (兼容CAN 2. OA);
- CAN通信波特率: 5K~1Mbps;
- CAN通讯接口: DB9针型插座,符合DeviceNet和CANopen标准;
- 数据接收能力:9000帧/s(1M波特率,标准帧,8字节数据长度);
- 隔离耐压: DC 2500V;
- 工作温度: -20℃~+70℃;

- 储存温度: -40℃~+85℃;
- 物理尺寸: 85mm x 91mm。

1.3 产品外观

第2章 硬件安装与接线

本章内容主要介绍 PCIeCAN 接口卡的安装和接口端子定义。

2.1 硬件安装

为保证 CAN 卡能够正常使用,在安装与拆卸时请确认**计算机处于关机状态**。该接口卡是静电敏感型板卡,请在安装与拆卸时注意静电防护,可佩戴防静电手套或手持办卡边缘,避免直接接触元器件。

具体安装步骤如下:

- 1) 关闭PC 电源;
- 2) 打开PC 的盖子;
- 3)将接口卡插入空闲的PCIe 插槽;
- 4) 拧紧固定板卡的螺钉;
- 5) 打开PC 电源,此时BIOS 会自动给接口卡分配中断和I/O地址。

2.2 接口定义

该接口卡集成2路CAN通道,即CANO和CAN1通道,通道定义顺序如图2-1,通过DB9针型连接器与CAN-bus网络进行连接。DB9 针型连接器的引脚信号定义如图 2-2 所示。引脚定义符合DeviceNet和CANopen标准。

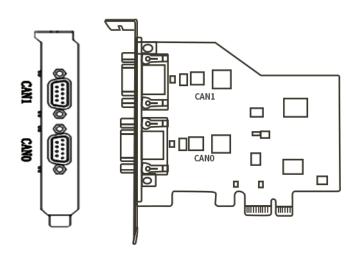
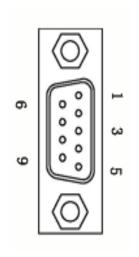



图 2-1 CAN 通道顺序

引脚	信号	描述
1		无连接
2	CAN_L	CAN_L 信号线
3	CAN_GND	参考地
4		无连接
5	CAN_SHIELD	屏蔽线
6	CAN_GND	参考地
7	CAN_H	CAN_H 信号线
8		无连接
9		无连接

图 2-2 CAN 接口端子定义

2.3 终端电阻

如CAN网络采用直线拓扑结构,总线的2个终端需要安装120欧姆的终端电阻。如果节点数目大于2,中间节点不需要安装120欧姆的终端电阻,如图2-3。

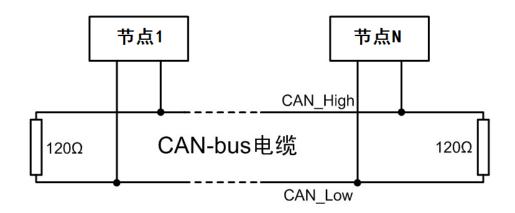


图2-3 总线拓扑结构

该接口卡的每路CAN通道板上都集成了120欧姆终端电阻,可通过拨码开关来设定对应的CAN通道是否使用该电阻。如果PCeCAN接口卡的对应CAN通道位于一个CAN网络的端点,请将对应通道的拨码开关处于0N的状态。出厂时,两通道拨码开关默认连接状态,即使用集成120欧姆终端电阻。

2.4 指示灯

该接口卡集成 3 个指示灯,分别为 PWR、CAN1 与 CAN2,具体指示功能见表 2-4。

设备电源接通后,PWR 指示灯绿色常亮。CAN1 和 CAN2 指示灯在上位机软件启动设备之前红色常亮,软件启动相应通道后,该通道绿色常亮。某一通道有数据收发时,相应的指示灯绿色闪烁;某一通道有总线错误产生时,相应指示灯红色闪烁。

表 2-4 指示灯功能定义

指示灯	颜色	状态	定义	
PWR	绿	常亮	电源正常	
	绿	常亮	CANO 通道已经启动,等待收发数据	
CANI	绿	闪烁	CANO 通道有数据收发	
CAN1	红	常亮	CANO 通道没有启动	
	红	闪烁	CANO 收发数据时有错误产生	
	绿	常亮	CAN1 通道已经启动,等待收发数据	
CAN2	绿	闪烁	CAN1 通道有数据收发	
	红	常亮	CAN1 通道没有启动	
	红	闪烁	CAN1 收发数据时有错误产生	

附录1 装箱清单

序号	字号 名称		单位	说明
1	CAN 接口卡	1	套	PCIeCAN-2I+接口卡
2	DB9 转接板	2	条	将 CAN 接口的 DB9 转为 OPEN3 连接器
3	合格证	1	份	质量部配发的产品检验合格标识

(注:为用户方便获得最新版软件及使用手册等相关资料, 随货不提供光盘, 请至官网下载, 网址: http://www.itekon.com。)

附录 2 标准波特率设置

	波特率(Kbps)	BTR0	BTR1
1	5	BF	FF
2	10	31	1C
3	20	18	1C
4	40	87	FF
5	50	09	1C
6	80	83	FF
7	100	04	1C
8	125	03	1C
9	200	81	FA
10	250	01	1C
11	400	80	FA
12	500	00	1C
13	666	80	В6
14	800	00	16
15	1000	00	14

附录 3 CAN 总线通信距离(参考值)

波特率 (kbps)	最大通信距离 (m)
1000	40
500	130
250	270
125	530
100	620
50	1300
20	3300
10	6700
5	10000